Results of Proficiency Test Gasoil (premium) April 2023 Organized by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands Author: ing. C.M. Nijssen-Wester Correctors: ing. G.A. Oosterlaken-Buijs & Mrs. E.R. Montenij-Bos Approved by: ing. A.S. Noordman-de Neef Report: iis23G02 June 2023 ### **CONTENTS** | 1 | INTRODUCTION | 3 | |-----|--|----| | 2 | SET UP | 3 | | 2.1 | ACCREDITATION | 3 | | 2.2 | PROTOCOL | 4 | | 2.3 | CONFIDENTIALITY STATEMENT | 4 | | 2.4 | SAMPLES | 4 | | 2.5 | STABILITY OF THE SAMPLES | 5 | | 2.6 | ANALYZES | 5 | | 3 | RESULTS | 6 | | 3.1 | STATISTICS | 6 | | 3.2 | GRAPHICS | 7 | | 3.3 | Z-SCORES | 7 | | 4 | EVALUATION | 8 | | 4.1 | EVALUATION PER SAMPLE AND PER TEST | 8 | | 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES | 11 | | 4.3 | COMPARISON OF THE PROFICIENCY TEST OF APRIL 2023 WITH PREVIOUS PTS | 12 | ### Appendices: | 1. | Data, statistical and graphic results | 14 | |----|---------------------------------------|----| | 2. | Number of participants per country | 42 | | 3 | Abbreviations and literature | 13 | #### 1 Introduction Over the past years more and more diesel fuels are marketed with higher cetane numbers and additional cleaning agents and some synthetic content. These fuels are called premium Diesel or premium Gasoil. The demand for these premium diesel fuels is increasing. Since 2020 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the analysis of Gasoil (premium) based on the latest version of EN590 every year. During the annual proficiency testing program 2022/2023 it was decided to continue the round robin for the analysis of Gasoil (premium). In this interlaboratory study registered for participation: - 31 laboratories in 24 countries for regular analyzes in Gasoil (premium) iis23G02 - 15 laboratories in 13 countries for Total Contamination in Gasoil (premium) iis23G02TC In total 31 laboratories in 24 countries registered for participation in one or more proficiency tests, see appendix 2 for the number of participants per country. In this report the results of this Gasoil (premium) proficiency tests are presented and discussed. This report is also electronically available through the iis website www.iisnl.com. #### 2 SET UP The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. In this proficiency test the participants received, depending on the registration, from one up to two different samples of Gasoil (premium), see table below. | Sample ID | PT ID | Quantity | Purpose | |-----------|------------|-------------------|---------------------| | #23050 | iis23G02 | 1x 1 L + 1x 0.5 L | Regular analyzes | | #23051 | iis23G02TC | 1x 1 L | Total Contamination | Table 1: Gasoil (premium) samples used in PT iis23G02 Participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation. #### 2.1 ACCREDITATION The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires. #### 2.2 PROTOCOL The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page. #### 2.3 CONFIDENTIALITY STATEMENT All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved. #### 2.4 SAMPLES For the preparation of the sample for the regular analyzes in Gasoil (premium) a batch of approximately 100 liters of Gasoil (premium) was obtained from the local market. After homogenisation 45 amber glass bottles of 1 L and 45 amber glass bottles of 0.5 L were filled and labelled #23050. The homogeneity of the subsamples was checked by the determination of Density at 15 °C in accordance with ISO12185 on 8 stratified randomly selected subsamples. | | Density at 15 °C
in kg/m³ | |-----------------|------------------------------| | sample #23050-1 | 834.26 | | sample #23050-2 | 834.25 | | sample #23050-3 | 834.24 | | sample #23050-4 | 834.25 | | sample #23050-5 | 834.27 | | sample #23050-6 | 834.26 | | sample #23050-7 | 834.26 | | sample #23050-8 | 834.25 | Table 2: homogeneity test results of subsamples #23050 From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table. | | Density at 15 °C
in kg/m³ | |---------------------------------|------------------------------| | r (observed) | 0.03 | | reference test method | ISO12185:96 | | 0.3 x R (reference test method) | 0.15 | Table 3: evaluation of the repeatability of subsamples #23050 The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed. For the preparation of the sample for the determination of Total Contamination in Gasoil (premium) a batch of approximately 25 liters Gasoil (premium) was obtained from the local market. A defined volume of freshly prepared and well shaken dust suspension of Arizona Dust material in an oil was added to a 1 L empty bottle by means of a calibrated pipette. The addition was checked by weighing the bottle before and after the addition. In total 22 bottles were prepared and subsequently filled up to 1 L with Gasoil (premium) and homogenized. Finally, the subsamples were labelled #23051. Depending on the registration of the participant the appropriate set of PT samples was sent on March 15, 2023. An SDS was added to the sample package. #### 2.5 STABILITY OF THE SAMPLES The stability of Gasoil (premium) packed in amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test. #### 2.6 ANALYZES The participants were requested to determine on sample #23050: Total Acid Number, Ash content, Calculated Cetane Index (four variables), Cloud Point, Cold Filter Plugging Point (CFPP), Carbon Residue (micro method) on 10% distillation residue, Copper Corrosion 3 hrs at 50 °C, Density at 15 °C, Distillation at 760 mmHg (IBP, 10%, 50%, 90%, 95% recovered, FBP and Volume at 250 °C and 350 °C), FAME, Flash Point PMcc, Kinematic Viscosity at 40 °C, Lubricity by HFRR at 60 °C, Manganese as Mn, Nitrogen, Aromatic Hydrocarbons (Polycyclic, Mono, Di, Tri+ and Total), Pour Point (Manual and Automated), Sulfur and Water. On sample #23051 was requested to determine: Total Contamination. It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations. To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com. #### 3 RESULTS During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers. Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks. #### 3.1 STATISTICS The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis
Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation. First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care. The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data. According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by F(0.01) for the Rosner's test. Stragglers are marked by F(0.01) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations. For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report. Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8. #### 3.2 GRAPHICS In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation. #### 3.3 Z-SCORES To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (dereived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former its proficiency tests. When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use. The z-scores were calculated according to: $z_{\text{(target)}} = \text{(test result - average of PT)} / \text{target standard deviation}$ The $z_{(target)}$ scores are listed in the result tables of appendix 1. Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows: |z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory #### 4 **EVALUATION** In this proficiency test some problems were encountered with the dispatch of the samples. For the regular Gasoil (premium) PT two participants reported test results after the final reporting date and five other participants did not report any test results. Not all participants were able to report all tests requested. For the PT on Total Contamination in Gasoil (premium) none of the participants reported test results after the final reporting date and five participants did not report any test results. In total 26 participants reported 443 numerical test results. Observed were 22 outlying test results, which is 5.0%. In proficiency tests outlier percentages of 3% - 7.5% are quite normal. Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1. #### 4.1 EVALUATION PER SAMPLE AND PER TEST In this section the reported test results are discussed per sample and per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 3. In the iis PT reports ASTM test methods are referred to with a number (e.g. D5950) and an added designation for the year that the test method was adopted or revised (e.g. D5950:14). When a method has been reapproved an "R" will be added and the year of approval (e.g. D5950:14R20). #### sample #23050 <u>Total Acid Number</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D974:22. Ash content: This determination was not problematic. Almost all reporting participants agreed on a concentration lower than 0.01%M/M. Therefore, no z-scores are calculated. Calculated Cetane Index, four variables: Regretfully, no reproducibility is mentioned in procedure A of ASTM D4737 nor in the equivalent test methods ISO4264 and IP380. Therefore, iis has estimated a reproducibility for Calculated Cetane Index by Four Variable Equation based on previous iis PTs (see iis memo 1904). This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the estimated target reproducibility based on iis memo 1904. <u>Cloud Point</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ISO3015:19. <u>Cold Filter Plugging Point (CFPP)</u>: This determination was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of EN116:15. <u>Carbon Residue (micro method) on 10% distillation residue</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ISO10370:14. Copper Corrosion 3 hrs at 50 °C: This determination was not problematic. All reporting laboratories agreed on a result of 1 (1a). <u>Density at 15 °C</u>: This determination was not problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ISO12185:96. <u>Distillation at 760 mmHg</u>: This determination was not problematic. Nine statistical outliers were observed over eight parameters. All calculated reproducibilities after rejection of the statistical outliers are in agreement with the requirements of ISO3405:19 automated mode. When evaluated against the requirements of ISO3405:19 manual mode, only the calculated reproducibilities for IBP and 95% recovered are not in agreement. FAME: This determination was problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of mode B of EN14078:14. <u>Flash Point PMcc</u>: This determination was problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of ISO2719-A:16+A1:21. <u>Kinematic Viscosity at 40 °C</u>: This determination was problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of ISO3104:20. - <u>Lubricity by HFRR at 60 °C</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of modes A or B of ISO12156-1:18. - <u>Manganese as Mn</u>: This determination may be not problematic. Only four test results
were reported of which only one numeric test result. Therefore, no z-scores are calculated. - Nitrogen: This determination was problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of ASTM D4629:17. - Polycyclic Aromatic Hydrocarbons: This determination was not problematic. No statistical outliers were observed and one test results was excluded because of outliers in the Di Aromatic Hydrocarbons. The calculated reproducibility after rejection of the suspect data is in agreement with the requirements of EN12916:19+A1:22. - Mono Aromatic Hydrocarbons: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of EN12916:19+A1:22. - <u>Di Aromatic Hydrocarbons</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of EN12916:19+A1:22. - <u>Tri+ Aromatic Hydrocarbons</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of EN12916:19+A1:22. - Total Aromatic Hydrocarbons: This determination was not problematic. No statistical outliers were observed and one test results was excluded because of outliers in the Mono and Di Aromatic Hydrocarbons. The calculated reproducibility after rejection of the suspect data is in agreement with the requirements of EN12916:19+A1:22. - Pour Point Manual: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ISO3016:19. Remarkably, two laboratories reported to have done ISO3016 automated. In the 2019 version of ISO3016 it is explicitly explained that this method does not support automated procedures for this test nor does the reproducibility of this test method apply to results obtained with automated equipment (see Foreword of ISO3016:19). <u>Pour Point Automated 3 °C interval</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements ASTM D5950:14R20. Sulfur: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ISO20846:19. <u>Water</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ISO12937:00. #### sample #23051 <u>Total Contamination</u>: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN12662:14. #### 4.2 Performance evaluation for the group of Laboratories A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from reference methods are presented in the next tables. | Parameter | unit | n | average | 2.8 * sd | R(lit) | |-----------------------------------|----------|----|---------|----------|--------| | Total Acid Number | mg KOH/g | 10 | 0.036 | 0.022 | 0.04 | | Ash content | %M/M | 11 | <0.01 | n.e. | n.e. | | Calc. Cetane Index four variables | | 19 | 53.49 | 0.92 | 0.91 | | Cloud Point | °C | 15 | -6.2 | 1.9 | 4 | | Cold Filter Plugging Point | °C | 17 | -24.6 | 9.2 | 4.5 | | Carbon Residue on 10% residue | %M/M | 13 | 0.017 | 0.029 | 0.028 | | Copper Corrosion 3 hrs at 50 °C | | 15 | 1 (1a) | n.a. | n.a. | | Density at 15 °C | kg/m³ | 22 | 834.2 | 0.3 | 0.5 | | Initial Boiling Point | °C | 21 | 167.8 | 9.8 | 9.2 | | Temp at 10% recovered | °C | 22 | 203.8 | 3.9 | 4.5 | | Temp at 50% recovered | °C | 21 | 274.0 | 2.3 | 3.0 | | Temp at 90% recovered | °C | 21 | 344.8 | 3.8 | 5.2 | | Temp at 95% recovered | °C | 20 | 358.6 | 8.2 | 9.0 | | Final Boiling Point | °C | 17 | 366.7 | 3.4 | 7.1 | | Volume at 250 °C | %V/V | 20 | 37.0 | 1.7 | 2.7 | | Volume at 350 °C | %V/V | 17 | 92.1 | 1.6 | 2.7 | | FAME | %V/V | 11 | 6.82 | 0.67 | 0.50 | | Flash Point PMcc °C | | 21 | 53.6 | 6.2 | 3.8 | | Kinematic Viscosity at 40 °C | mm²/s | 18 | 2.844 | 0.050 | 0.032 | | Parameter | unit | n | average | 2.8 * sd | R(lit) | |---------------------------------|-------|----|---------|----------|--------| | Lubricity by HFRR at 60 °C | μm | 10 | 180 | 39 | 80 | | Manganese as Mn | mg/L | 2 | <0.5 | n.e. | n.e. | | Nitrogen | mg/kg | 5 | 12.3 | 5.6 | 2.9 | | Polycyclic AromaticHydrocarbons | %M/M | 9 | 1.23 | 0.30 | 0.69 | | Mono Aromatic Hydrocarbons | %M/M | 7 | 15.2 | 0.7 | 1.8 | | Di Aromatic Hydrocarbons | %M/M | 7 | 1.14 | 0.24 | 0.33 | | Tri⁺ Aromatic Hydrocarbons | %M/M | 7 | 0.10 | 0.14 | 0.52 | | Total Aromatic Hydrocarbons | %M/M | 7 | 16.4 | 0.8 | 1.7 | | Pour Point Manual | °C | 8 | -29.9 | 4.6 | 9 | | Pour Point Automated Δ3 °C | °C | 8 | -30.4 | 3.3 | 6.1 | | Sulfur | mg/kg | 21 | 6.8 | 1.4 | 1.9 | | Water | mg/kg | 17 | 25.3 | 26.4 | 34.6 | Table 4: reproducibilities of tests on sample #23050 | Parameter | unit | n | average | 2.8 * sd | R(lit) | |---------------------|-------|---|---------|----------|--------| | Total Contamination | mg/kg | 8 | 34.2 | 3.5 | 9.7 | Table 5: reproducibilities of tests on sample #23051 Without further statistical calculations it can be concluded that for many tests there is a good compliance of the group of participants with the reference test methods. The problematic tests have been discussed in paragraph 4.1. #### 4.3 COMPARISON OF THE PROFICIENCY TEST OF APRIL 2023 WITH PREVIOUS PTS | | April
2023 | April
2022 | April
2021 | April
2020 | |------------------------------------|---------------|---------------|---------------|---------------| | Number of reporting laboratories | 26 | 26 | 29 | 30 | | Number of test results | 443 | 500 | 553 | 618 | | Number of statistical outliers | 22 | 17 | 21 | 15 | | Percentage of statistical outliers | 5.0% | 3.4% | 3.8% | 2.4% | Table 6: comparison with previous proficiency tests In proficiency tests outlier percentages of 3% - 7.5% are quite normal. The performance of the determinations of the proficiency test was compared to the requirements of the reference test methods. The conclusions are given the following table. | Parameter | April
2023 | April
2022 | April
2021 | April
2020 | |-----------------------------------|---------------|---------------|---------------|---------------| | Total Acid Number | + | +/- | + | + | | Ash content | n.e. | n.e. | n.e. | ++ | | Calc. Cetane Index four variables | +/- | + | + | + | | Cloud Point | ++ | ++ | ++ | + | | Cold Filter Plugging Point | | +/- | - | - | | Parameter | April
2023 | April
2022 | April
2021 | April
2020 | |---------------------------------|---------------|---------------|---------------|---------------| | Carbon Residue on 10% residue | +/- | +/- | | +/- | | Density at 15 °C | + | + | ++ | ++ | | Distillation at 760 mmHg | + | + | - | + | | FAME | - | - | + | +/- | | Flash Point PMcc | - | +/- | n.e. | + | | Kinematic Viscosity at 40 °C | - | - | - | +/- | | Lubricity by HFRR at 60 °C | ++ | ++ | + | + | | Manganese as Mn | n.e. | n.e. | n.e. | n.e. | | Nitrogen | - | | + | - | | Polycyclic AromaticHydrocarbons | ++ | ++ | +/- | + | | Mono, Di and Tri⁺ Aromatics | ++ | ++ | + | + | | Total Aromatic Hydrocarbons | ++ | ++ | + | ++ | | Pour Point | + | + | + | + | | Sulfur | + | + | +/- | + | | Water | + | ++ | + | ++ | | Total Contamination | ++ | - | - | - | Table 7: comparison determinations to the reference test methods ### The following performance categories were used: ++ : group performed much better than the reference test method + : group performed better than the reference test method +/- : group performance equals to the reference test method - : group performed worse than the reference test method -- : group performed much worse than the reference test method n.e. : not evaluated APPENDIX 1 Determination of Total Acid Number on sample #23050; result in mg KOH/g | lab | method | value | mark | z(targ) | remarks | |--------------|--------------------------------|-----------------|---------|---------|---------| | 171 | D974 | 0.03 | | -0.43 | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | D974 | 0.03 | | -0.43 | | | 541 | D664-A | <0.1 | | | | | 824 | D974 | 0.0307 | | -0.38 | | | 1039 | D664-A | 0.03 | | -0.43 | | | 1121 | D664-A | 0.049 | | 0.90 | | | 1126 | D074 | 0.004 | | | | | 1237 | D974 | 0.031 | | -0.36 | | | 1266 | | | | | | | 1272
1310 | | | | | | | 1399 | D664 | 0.03145 | | -0.33 | | | 1539 | D664-A | 0.05 | | 0.97 | | | 1715 | D004-A | 0.03 | | | | | 1713 | | | | | | | 1854 | D664-A | 0.0395 | | 0.23 | | | 6028 | 200171 | | | | | | 6044 | D974 | 0.09 | G(0.01) | 3.77 | | | 6047 | 20 | | 0(0.0.) | | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | | | | | | 6446 | ISO6618 | 0.04 | | 0.27 | | | 6447 | | | | | | | 6499 | | | | | | | 6530 | | | | | | | | | | | | | | | normality | suspect | | | | | | n | 10 | | | | | | outliers | 1 | | | | | | mean (n) | 0.0362 | | | | | | st.dev. (n) | 0.00799 | | | | | | R(calc.) | 0.0224 | | | | | | st.dev.(D974:22)
R(D974:22) | 0.01429
0.04 | | | | | | 11(0814.22) | 0.04 | | | | | 0.4 | | | | | | | 0.1 | | | | | × | | 0.09 | | | | | * | # Determination of Ash content on sample #23050; result in %M/M | lab | method | value | mark | z(targ) | remarks | |------|----------|--------|------|---------|---------| | 171 | D482 | <0.010 | | | | | 223 | | | | | | | 300 | | | | | | |
492 | | | | | | | 496 | ISO6245 | 0 | | | | | 541 | D482 | <0.001 | | | | | 824 | ISO6245 | 0.001 | | | | | 1039 | ISO6245 | <0.001 | | | | | 1121 | IP4 | 0.0004 | | | | | 1126 | | | | | | | 1237 | | | | | | | 1266 | | | | | | | 1272 | ISO6245 | 0.0031 | | | | | 1310 | ISO6245 | <0.001 | | | | | 1399 | D482 | <0.1 | | | | | 1539 | ISO6245 | 0.0004 | | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | ISO6245 | 0.001 | | | | | 6028 | | | | | | | 6044 | ISO6245 | 0 | | | | | 6047 | | | | | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | | | | | | 6446 | | | | | | | 6447 | | | | | | | 6499 | | | | | | | 6530 | | | | | | | | n | 11 | | | | | | mean (n) | <0.01 | | | | ### Determination of Calculated Cetane Index, four variables acc. to ISO4264 on sample #23050 | lab | method | value | mark | z(targ) | remarks | |--------------|------------------------|--------------|------|---------------|---------| | 171 | D4737-A | 53.4 | mark | -0.27 | Tomarko | | 223 | D4737-A | 54.06 | | 1.77 | | | 300 | | | | | | | 492 | | | | | | | 496 | ISO4264 | 53.20 | | -0.88 | | | 541 | ISO4264 | 53.5 | | 0.04 | | | 824 | ISO4264 | 53.63 | | 0.44 | | | 1039 | ISO4264 | 53.6 | | 0.35 | | | 1121 | ISO4264 | 53.105 | | -1.18 | | | 1126 | | | | | | | 1237 | ISO4264 | 53.78 | | 0.91 | | | 1266 | ISO4264 | 53.1 | | -1.19 | | | 1272 | ISO4264 | 53.5 | | 0.04 | | | 1310 | ISO4264 | 53.57 | | 0.26 | | | 1399 | D4373 | 53.5 | | 0.04 | | | 1539
1715 | ISO4264 | 53.4
53.7 | | -0.27
0.66 | | | 1713 | ISO4264 | | | 0.00 | | | 1854 | D4737-A | 53.32 | | -0.51 | | | 6028 | D4131-A | | | -0.51 | | | 6044 | ISO4264 | 53 | | -1.50 | | | 6047 | 100 120 1 | | | | | | 6075 | ISO4264 | 54.2730 | | 2.43 | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | | | | | | 6446 | ISO4264 | 53.1 | | -1.19 | | | 6447 | | | | | | | 6499 | D4737-A | 53.5 | | 0.04 | | | 6530 | | | | | | | | normality | OK | | | | | | n | 19 | | | | | | outliers | 0 | | | | | | mean (n) | 53.486 | | | | | | st.dev. (n) | 0.3271 | | | | | | R(calc.) | 0.916 | | | | | | st.dev.(iis memo 1904) | 0.3239 | | | | | | R(iis memo 1904) | 0.907 | | | | | | | | | | | ### Determination of Cloud Point on sample #23050; result in °C | lab | method | value | mark z(targ) | remarks | |------|---------------------|-------|--------------|---------| | 171 | D2500 | -5 | 0.83 | | | 223 | | | | | | 300 | | | | | | 492 | | | | | | 496 | ISO3015 | -7 | -0.57 | | | 541 | D5771 | -6.1 | 0.06 | | | 824 | ISO3015 | -6 | 0.13 | | | 1039 | ISO3015 | -6.8 | -0.43 | | | 1121 | IP219 | -6.7 | -0.36 | | | 1126 | | | | | | 1237 | ISO3015 | -7 | -0.57 | | | 1266 | | -5.8 | 0.27 | | | 1272 | | | | | | 1310 | ISO3015 | -6.6 | -0.29 | | | 1399 | D5773 | -6.0 | 0.13 | | | 1539 | ISO3015 | -7 | -0.57 | | | 1715 | | | | | | 1720 | | | | | | 1854 | D2500 | -6 | 0.13 | | | 6028 | | | | | | 6044 | ISO3015 | -4.7 | 1.04 | | | 6047 | | | | | | 6075 | | | | | | 6317 | | | | | | 6373 | | | | | | 6378 | | | | | | 6379 | | | | | | 6446 | D2500 | -6 | 0.13 | | | 6447 | | | | | | 6499 | D7683 | -6 | 0.13 | | | 6530 | | | | | | | normality | OK | | | | | n | 15 | | | | | outliers | 0 | | | | | mean (n) | -6.18 | | | | | st.dev. (n) | 0.694 | | | | | R(calc.) | 1.94 | | | | | st.dev.(ISO3015:19) | 1.429 | | | | | R(ISO3015:19) | 4 | | | | | (, | • | | | ### Determination of Cold Filter Plugging Point (CFPP) on sample #23050; result in °C | lab | method | value | mark | z(targ) | remarks | |--------------|----------------------------------|---------------|---------|---------|---------| | 171 | D6371 | -25 | | -0.27 | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | EN116 | -28 | | -2.14 | | | 541 | D6371 | -27 | | -1.52 | | | 824 | EN116 | -23 | | 0.98 | | | 1039 | EN116 | -28 | | -2.14 | | | 1121 | IP309 | -19.0 | | 3.49 | | | 1126 | | | | | | | 1237 | EN116 | -29.5 | | -3.08 | | | 1266 | EN116 | -20.0 | | 2.86 | | | 1272 | EN116 | -25 | | -0.27 | | | 1310 | EN116 | -26.25 | | -1.05 | | | 1399 | IP309 | -21 | | 2.24 | | | 1539 | EN116 | -28 | | -2.14 | | | 1715 | EN116 | -21 | | 2.24 | | | 1720 | ID200 |
-21 | | 2.24 | | | 1854
6028 | IP309 | | | 2.24 | | | 6044 | EN116 |
-11 | G(0.05) | 8.49 | | | 6047 | EN116 | -26.0 | G(0.03) | -0.89 | | | 6075 | LIVITO | -20.0 | | -0.03 | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | | | | | | 6446 | EN116 | -27 | | -1.52 | | | 6447 | | | | | | | 6499 | D6371 | -23 | | 0.98 | | | 6530 | | | | | | | | | | | | | | | normality | OK | | | | | | n | 17 | | | | | | outliers | 1 | | | | | | mean (n) | -24.57 | | | | | | st.dev. (n) | 3.276 | | | | | | R(calc.) | 9.17 | | | | | | st.dev.(EN116:15)
R(EN116:15) | 1.598
4.47 | | | | | | 11(11110.10) | 7.77 | | | | # Determination of Carbon Residue (micro method) on 10% distillation residue on sample #23050; result in %M/M | lab | method | value | mark | z(targ) | remarks | |--------------|--|---------------------|------|---------------|---------| | 171 | D189 | 0.02 | | 0.25 | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | ISO10370 | 0.021 | | 0.35 | | | 541 | D189 | 0.005549 | | -1.19 | | | 824 | ISO10370 | 0.019 | | 0.15 | | | 1039
1121 | ISO10370
IP398 | 0.01
0.022 | | -0.75
0.45 | | | 1126 | 11 330 | 0.022 | | 0.43 | | | 1237 | | | | | | | 1266 | | | | | | | 1272 | ISO10370 | 0.032 | | 1.45 | | | 1310 | ISO10370 | 0.020854 | | 0.33 | | | 1399 | D4530 | 0.0020 | | -1.54 | | | 1539 | ISO6615 | 0.01 | | -0.75 | | | 1715 | | | | | | | 1720
1854 | ISO10370 | 0.015 | | -0.25 | | | 6028 | 130 10370 | 0.015 | | -0.25 | | | 6044 | ISO10370 | 0.01 | | -0.75 | | | 6047 | 10010010 | | | | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | 10040070 | | | | | | 6446 | ISO10370 | 0.04 | | 2.24 | | | 6447
6499 | | | | | | | 6530 | | | | | | | 0000 | | | | | | | | normality | OK | | | | | | n | 13 | | | | | | outliers | 0 | | | | | | mean (n) | 0.01749 | | | | | | st.dev. (n) | 0.010515 | | | | | | R(calc.) | 0.02944 | | | | | | st.dev.(ISO10370:14)
R(ISO10370:14) | 0.010038
0.02811 | | | | | | 11/100 1007 0.14) | 0.02011 | | | | # Determination of Copper Corrosion 3 hrs at 50 °C on sample #23050 | lab | method | value | mark | z(targ) | remarks | |------|---------------|--------|------|---------|---------| | 171 | D130 | 1a | | | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | D130 | 1a | | | | | 541 | D130 | 1a | | | | | 824 | D130 | 1a | | | | | 1039 | ISO2160 | 1A | | | | | 1121 | IP154 | 1a | | | | | 1126 | | | | | | | 1237 | | | | | | | 1266 | ISO2160 | 1a | | | | | 1272 | ISO2160 | 1A | | | | | 1310 | ISO2160 | 1A | | | | | 1399 | | | | | | | 1539 | ISO2160 | 1a | | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | D130 | 1A | | | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | | | | | | | 6075 | ISO2160 | 1A | | | | | 6317 | D130 | 1a | | | | | 6373 | | | | | | | 6378 | D130 | 1a | | | | | 6379 | | | | | | | 6446 | ISO2160 | 1A | | | | | 6447 | | | | | | | 6499 | | | | | | | 6530 | | | | | | | | n | 15 | | | | | | n
maan (n) | 15 | | | | | | mean (n) | 1 (1a) | | | | # Determination of Density at 15 $^{\circ}\text{C}$ on sample #23050; result in kg/m³ | lab | method | value | mark | z(targ) | remarks | |------|----------------------|---------|-----------|---------|---| | 171 | D4052 | 834.3 | | 0.30 | | | 223 | D4052 | 834.4 | С | 0.86 | first reported: 833.8 | | 300 | | | | | | | 492 | D4052 | 834.2 | | -0.26 | | | 496 | ISO12185 | 834.23 | | -0.09 | | | 541 | D4052 | 834.2 | | -0.26 | | | 824 | ISO12185 | 834.3 | | 0.30 | | | 1039 | ISO12185 | 834.2 | | -0.26 | • | | 1121 | IP365 | 834.37 | С | 0.69 | first reported: 0.83437 kg.m ³ | | 1126 | ISO12185 | 834.23 | | -0.09 | | | 1237 | ISO12185 | 834.1 | | -0.82 | | | 1266 | ISO3675 | 835.9 | C,R(0.01) | 9.26 | first reported: 834.7 | | 1272 | ISO12185 | 834.87 | C,R(0.01) | 3.49 | first reported: 835.02 | | 1310 | ISO12185 | 834.35 | | 0.58 | | | 1399 | D4052 | 834.4 | | 0.86 | | | 1539 | ISO3675 | 834.2 | | -0.26 | | | 1715 | ISO12185 | 834.2 | | -0.26 | | | 1720 | | | | | | | 1854 | ISO12185 | 834.34 | | 0.53 | | | 6028 | 10010105 | | | | | | 6044 | ISO12185 | 834.3 | | 0.30 | | | 6047 | ISO12185 | 834.1 | | -0.82 | | | 6075 | ISO12185 | 834.20 | | -0.26 | | | 6317 | D4052 | 834.14 | | -0.59 | | | 6373 | D. 1000 | | D(0.04) | | | | 6378 | D1298 | 834.7 | R(0.01) | 2.54 | | | 6379 | D. 4050 | | | | | | 6446 | D4052 | 834.2 | | -0.26 | | | 6447 | D4052 | 834.3 | | 0.30 | | | 6499 | D4052 | 834.15 | | -0.54 | | | 6530 | | | | | | | | normality | OK | | | | | | n | 22 | | | | | | outliers | 3 | | | | | | mean (n) | 834.246 | | | | | | st.dev. (n) | 0.0906 | | | | | | R(calc.) | 0.259 | | | | | | st.dev.(ISO12185:96) | 0.1786 | | | | | | R(ISO12185:96) | 0.5 | | | | | | • | | | | | ### Determination of Distillation at 760 mmHg on sample #23050; result in °C | lab | method | IBP | 10%rec | 50%rec | 90%rec | 95%rec | FBP | |---------|-----------------------|---------------|---------|----------|----------|---------|----------| | 171 | D86-automated | 165.9 | 204.0 | 273.9 | 344.1 | 357.1 | 366.6 | | 223 | | 168.26 | 203.84 | 274.57 | 344.51 | | 366.79 | | 300 | | | | | | | | | 492 | | | | | | | | | 496 | ISO3405-automated | 165.2 | 202.8 | 273.6 | 343.2 | 355.6 | 365.0 | | 541 | D86-automated | 167.8 | 203.9 | 273.9 | 345.2 | 359.1 | 367 | | 824 | D86-automated | 169.4 | 205.3 | 274.4 | 345.3 | 356.7 | 361.8 R5 | | 1039 | D2887a | 170.9 | 205.3 | 273.9 | 346.6 | 360.1 | 371.7 R5 | | 1121 | IP123-automated | 165.7 | 203.4 | 272.4 | 345.6 | 360.7 | 366.9 | | 1126 | | 171.4 | 203.8 | 274.2 | 343.6 | 357.3 | 368.1 | | 1237 | ISO3405-automated | 171.9 | 204.5 | 275.1 | 345.2 | 359.5 | 365.6 | | 1266 | ISO3405-automated | 166.6 | 202.2 | 274.0 | 346.4 | 360.2 | 365.5 | | 1272 | ISO3405 | 171.3 | 205.5 | 275.0 | 344.5 | 357.5 |
367.1 | | 1310 | ISO3405-automated | 171.1 | 205.7 | 273.8 | 341.7 | 350.8 | 369.0 C | | 1399 | D86-automated | 165.1 | 203.6 | 274.4 | 346.5 | 359.8 | 368.6 | | 1539 | ISO3405-automated | 168.0 | 203.0 | 273.8 | 344.8 | 358.7 | 365.0 | | 1715 | ISO3405-automated | | 204.0 | 275.1 | 346.1 | 361.2 | 366.0 | | 1720 | | | | | | | | | 1854 | ISO3405-automated | 170.0 | 203.3 | 273.6 | 343.7 | | 366.8 | | 6028 | | | | | | | | | 6044 | D86-automated | 163.2 | 200.8 | 273.2 | 344.6 | 356.6 | 357.3 R5 | | 6047 | ISO3405-automated | 167.8 | 204.5 | 275.2 R5 | 345.1 | 359.5 | 366.9 | | 6075 | | 172.2 | 207.1 | 277.0 | 356.1 R1 | 363.9 | 368.0 | | 6317 | | | | | | | | | 6373 | | | | | | | | | 6378 | D86-automated | 159.0 C | 202.5 C | 273.0 | 345.0 | 362.5 | 365.5 | | 6379 | | | | | | | | | 6446 | ISO3405-automated | 162.5 | 202.5 | 272.4 | 342.4 | 354.6 | 361.2 R5 | | 6447 | | | | | | | | | 6499 | D86-automated | 170.3 | 203.0 | 274.9 | 346.8 | 359.6 | 360.5 R5 | | 6530 | | | | | | | | | | n anna alifa i | OK | OK | OK | OK | | OK | | | normality | OK | OK | OK | OK | suspect | OK | | | n
 | 21 | 22 | 21 | 21 | 20 | 17 | | | outliers | 0 | 0 | 1 | 1 | 0 | 5 | | | mean (n) | 167.79 | 203.84 | 274.02 | 344.81 | 358.55 | 366.73 | | | st.dev. (n) | 3.507
9.82 | 1.390 | 0.823 | 1.360 | 2.921 | 1.206 | | | R(calc.) | | 3.89 | 2.30 | 3.81 | 8.18 | 3.38 | | | st.dev.(ISO3405-A:19) | 3.296 | 1.602 | 1.071 | 1.847 | 3.204 | 2.536 | | Compa | R(ISO3405-A:19) | 9.23 | 4.48 | 3.0 | 5.17 | 8.97 | 7.1 | | Compare | e
R(ISO3405-M:19) | 6.15 | 4.63 | 4.14 | 4.30 | 4.72 | 3.79 | | | N(1303400-W.19) | 0.10 | 4.03 | 4.14 | 4.30 | 4.12 | J.18 | Lab 1310 first reported for FBP: 356.9 $^{\circ}\text{C}$ Lab 6378 first reported for IBP: 155 $^{\circ}\text{C}$ and for Temp. at 10 % recovered: 200.0 $^{\circ}\text{C}$ ### z-scores Distillation on sample #23050 | lab | IBP | 10%rec | 50%rec | 90%rec | 95%rec | FBP | |------|-------|--------|--------|--------|--------|-------| | 171 | -0.57 | 0.10 | -0.11 | -0.38 | -0.45 | -0.05 | | 223 | 0.14 | 0.00 | 0.52 | -0.16 | | 0.02 | | 300 | | | | | | | | 492 | | | | | | | | 496 | -0.79 | -0.65 | -0.39 | -0.87 | -0.92 | -0.68 | | 541 | 0.00 | 0.04 | -0.11 | 0.21 | 0.17 | 0.11 | | 824 | 0.49 | 0.91 | 0.36 | 0.27 | -0.58 | -1.94 | | 1039 | 0.94 | 0.91 | -0.11 | 0.97 | 0.48 | 1.96 | | 1121 | -0.63 | -0.28 | -1.51 | 0.43 | 0.67 | 0.07 | | 1126 | 1.10 | -0.03 | 0.17 | -0.65 | -0.39 | 0.54 | | 1237 | 1.25 | 0.41 | 1.01 | 0.21 | 0.30 | -0.45 | | 1266 | -0.36 | -1.03 | -0.02 | 0.86 | 0.51 | -0.48 | | 1272 | 1.07 | 1.03 | 0.92 | -0.17 | -0.33 | 0.15 | | 1310 | 1.00 | 1.16 | -0.20 | -1.68 | -2.42 | 0.90 | | 1399 | -0.82 | -0.15 | 0.36 | 0.92 | 0.39 | 0.74 | | 1539 | 0.06 | -0.53 | -0.20 | 0.00 | 0.05 | -0.68 | | 1715 | | 0.10 | 1.01 | 0.70 | 0.83 | -0.29 | | 1720 | | | | | | | | 1854 | 0.67 | -0.34 | -0.39 | -0.60 | | 0.03 | | 6028 | | | | | | | | 6044 | -1.39 | -1.90 | -0.76 | -0.11 | -0.61 | -3.72 | | 6047 | 0.00 | 0.41 | 1.10 | 0.16 | 0.30 | 0.07 | | 6075 | 1.34 | 2.03 | 2.78 | 6.11 | 1.67 | 0.50 | | 6317 | | | | | | | | 6373 | | | | | | | | 6378 | -2.67 | -0.84 | -0.95 | 0.11 | 1.23 | -0.48 | | 6379 | | | | | | | | 6446 | -1.60 | -0.84 | -1.51 | -1.30 | -1.23 | -2.18 | | 6447 | | | | | | | | 6499 | 0.76 | -0.53 | 0.82 | 1.08 | 0.33 | -2.46 | | 6530 | | | | | | | ### Determination of Distillation on sample #23050; result in %V/V | lab | method | Vol.250 °C | mark | z(targ) | Vol.350 °C | mark | z(targ) | remarks | |--------|-----------------------|------------|------|---------|------------|----------|---------|----------------------| | 171 | D86-automated | 37.2 | С | 0.20 | | | | first reported: 47.5 | | 223 | | | | | | | | | | 300 | | | | | | | | | | 492 | | | | | | | | | | 496 | ISO3405-automated | 37.1 | | 0.09 | 93.1 | | 1.02 | | | 541 | D86-automated | | | | | | | | | 824 | D86-automated | 36.8 | | -0.22 | 92.2 | | 0.09 | | | 1039 | D2887a | 36.0 | | -1.05 | 91.3 | | -0.85 | | | 1121 | IP123-automated | 37.3 | | 0.30 | 91.9 | | -0.23 | | | 1126 | | 36.8 | | -0.22 | 92.7 | | 0.60 | | | 1237 | ISO3405-automated | 36.5 | | -0.53 | 92.1 | | -0.02 | | | 1266 | ISO3405-automated | 38.2 | | 1.23 | 91.5 | | -0.64 | | | 1272 | ISO3405 | 36.7 | | -0.32 | 92.5 | | 0.40 | | | 1310 | ISO3405-automated | 36.4 | | -0.63 | 94.5 | DG(0.05) | 2.47 | | | 1399 | D86-automated | 37.0 | | -0.01 | 91.6 | | -0.54 | | | 1539 | ISO3405-automated | 37.1 | | 0.09 | 92.3 | | 0.19 | | | 1715 | ISO3405-automated | 36.9 | | -0.11 | 91.5 | | -0.64 | | | 1720 | | | | | | | | | | 1854 | ISO3405-automated | 37.2 | | 0.20 | 93.7 | DG(0.05) | 1.64 | | | 6028 | | | | | | | | | | 6044 | D86-automated | 37.5 | | 0.51 | 92.1 | | -0.02 | | | 6047 | ISO3405-automated | 36.5 | | -0.53 | 91.7 | | -0.43 | | | 6075 | | 36.9 | | -0.11 | 92.3 | | 0.19 | | | 6317 | | | | | | | | | | 6373 | | | | | | | | | | 6378 | D86-automated | 38.5 | | 1.55 | 92.0 | | -0.12 | | | 6379 | | | | | | | | | | 6446 | ISO3405-automated | 37.5 | | 0.51 | 93.4 | | 1.33 | | | 6447 | | | | | | | | | | 6499 | D86-automated | 36.1 | | -0.94 | 91.8 | | -0.33 | | | 6530 | | | | | | | | | | | normality | OK | | | ок | | | | | | n | 20 | | | 17 | | | | | | outliers | 0 | | | 2 | | | | | | mean (n) | 37.01 | | | 92.12 | | | | | | st.dev. (n) | 0.617 | | | 0.570 | | | | | | R(calc.) | 1.73 | | | 1.60 | | | | | | st.dev.(ISO3405-A:19) | 0.964 | | | 0.964 | | | | | | R(ISO3405-A:19) | 2.7 | | | 2.7 | | | | | Compar | | | | | | | | | | - | R(ISO3405-M:19) | 2.51 | | | 2.15 | | | | | | | | | | | 0.8 — | | | | Volur | me at 250 °C | | | | | 0.0 | | Kernel Density | ### Determination of FAME on sample #23050; result in %V/V | lab | method | value | mark | z(targ) | remarks | |--------------|-----------------------|---------|-----------|-----------|---------------------| | 171 | D7371 | 5.52 | DG(0.05) | -7.27 | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | EN14078-B | 6.92 | | 0.58 | | | 541 | | | | | | | 824 | EN14070 D | 6.84 | | 0.13 | | | 1039 | EN14078-B | | | | | | 1121
1126 | EN14078-A | 7.116 | | 1.68 | | | 1237 | EN14078-B | 6.65 | | -0.94 | | | 1266 | EN14078-A | 6.34 | | -0.94 | | | 1272 | EN14078 | 0.34 | C,G(0.01) | -33.74 | first reported: 0.0 | | 1310 | EN14078-B | 6.675 | 0,0(0.01) | -0.80 | ilist reported. 0.0 | | 1399 | EN14078 | 6.01 | DG(0.05) | -4.52 | | | 1539 | 21111070 | | 20(0.00) | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | EN14078-C | 6.79 | | -0.15 | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | EN14078-B | 7.25 | | 2.43 | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | EN144070 B | | | | | | 6379 | EN14078-B | 6.8245 | | 0.04 | | | 6446 | EN14078-B | 6.8 | | -0.09 | | | 6447
6499 | EN14078-B | 6.78 | |
-0.21 | | | 6530 | EN 14070-D | | | -0.21 | | | 0030 | | | | | | | | normality | suspect | | | | | | n | 11 | | | | | | outliers | 3 | | | | | | mean (n) | 6.817 | | | | | | st.dev. (n) | 0.2379 | | | | | | R(calc.) | 0.666 | | | | | | st.dev.(EN14078-B:14) | 0.1783 | | | | | | R(EN14078-B:14) | 0.499 | | | | | | | | | | | ### Determination of Flash Point PMcc on sample #23050; result in °C | lab | method | value | mark | z(targ) | remarks | |--------------|-----------------------------|-----------|------|---------|---------| | 171 | D93-A | 52.0 | | -1.19 | | | 223 | D93-A | 56.6 | | 2.19 | | | 300 | | | | | | | 492 | | | | | | | 496 | ISO2719-A | 49.0 | | -3.40 | | | 541 | D93-A | 51 | | -1.93 | | | 824 | ISO2719-A | 53.0 | | -0.46 | | | 1039 | ISO2719-A | 53.5 | | -0.09 | | | 1121 | IP34-A | 50.8 | | -2.07 | | | 1126 | | | | | | | 1237 | ISO2719-A | 52.8 | | -0.60 | | | 1266 | ISO2719-A | 54.8 | | 0.87 | | | 1272 | ISO2719 | 58.5 | | 3.59 | | | 1310 | ISO2719-A | 52.5 | | -0.82 | | | 1399 | D93-A | 52 | | -1.19 | | | 1539 | ISO2719-A | 54.0 | | 0.28 | | | 1715 | ISO2719-A | 53.0 | | -0.46 | | | 1720 | D00 4 |
5.4.0 | | | | | 1854 | D93-A | 54.0 | | 0.28 | | | 6028 | D00 A | | | 4.00 | | | 6044 | D93-A | 55.5 | | 1.38 | | | 6047 | ISO2719-A | 53.0 | | -0.46 | | | 6075 | ISO2719-A | 54
57 | | 0.28 | | | 6317 | D93-A | 57 | | 2.49 | | | 6373 | | | | | | | 6378
6379 | | | | | | | 6446 | ISO2710 A | 53.5 | | -0.09 | | | 6447 | ISO2719-A | | | -0.09 | | | 6499 | ISO2719-A | 55.5 | | 1.38 | | | 6530 | 13027 19-A | | | 1.30 | | | 0330 | | | | | | | | normality | OK | | | | | | n | 21 | | | | | | outliers | 0 | | | | | | mean (n) | 53.619 | | | | | | st.dev. (n) | 2.2083 | | | | | | R(calc.) | 6.183 | | | | | | st.dev.(ISO2719-A:16+A1:21) | 1.3596 | | | | | | R(ISO2719-A:16+A1:21) | 3.807 | | | | | | , | | | | | ### Determination of Kinematic Viscosity at 40 °C on sample #23050; result in mm²/s | lab | method | value | mark | z(targ) | remarks | |--------------|-----------------------|------------------|------|----------------|-------------------------| | 171 | D445 | 2.875 | | 2.71 | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | ISO3104-B | 2.832 | | -1.11 | | | 541 | D445 | 2.822 | | -2.00 | | | 824 | ISO3104-A | 2.837 | | -0.66 | | | 1039
1121 | ISO3104-B
IP71 | 2.8334
2.8316 | | -0.98
-1.14 | | | 1121 | IP7 I | 2.0310 | | -1.14 | | | 1237 | ISO3104-A | 2.815 | | -2.62 | | | 1266 | ISO3104-A | 2.873 | | 2.53 | | | 1272 | ISO3104 | 2.870 | С | 2.27 | first reported: 2.96475 | | 1310 | ISO23581 | 2.8413 | • | -0.28 | | | 1399 | | | | | | | 1539 | ISO3104-A | 2.835 | | -0.84 | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | ISO3104-A | 2.838 | | -0.57 | | | 6028 | | | | | | | 6044 | ISO3104-A | 2.864 | _ | 1.73 | | | 6047 | ISO3104-A | 2.8515 | С | 0.62 | first reported: 3.2634 | | 6075
6317 | ISO3104-B
D7042 | 2.862
2.8506 | | 1.56
0.54 | | | 6373 | D7042 | 2.0000 | | 0.54 | | | 6378 | D445 | 2.83 | С | -1.28 | first reported: 3.0 | | 6379 | | | | | | | 6446 | ISO3104-A | 2.839 | | -0.49 | | | 6447 | | | | | | | 6499 | | | | | | | 6530 | | | | | | | | normality | OK | | | | | | n | 18 | | | | | | outliers | 0 | | | | | | mean (n) | 2.8445 | | | | | |
st.dev. (n) | 0.01787 | | | | | | R(calc.) | 0.0500 | | | | | | st.dev.(ISO3104-A:20) | 0.01126 | | | | | | R(ISO3104-A:20) | 0.0315 | | | | | | | | | | | ### Determination of Lubricity by HFRR at 60 °C on sample #23050; result in μm | lab | method | value | mark | z(targ) | Corrected | remarks | |--------------|--------------------------|-----------|--------------|-----------|-----------|---------| | 171 | | | | | | | | 223 | | | | | | | | 300 | | | | | | | | 492 | | | | | | | | 496 | ISO12156-1-A | 180 | | 0.01 | No | | | 541 | | | | | | | | 824 | ISO12156-1-A | 201 | | 0.75 | No | | | 1039 | ISO12156-1-B | 170 | | -0.34 | No | | | 1121 | | | | | | | | 1126 | 10040450 4 4 | 407 | | | | | | 1237 | ISO12156-1-A | 187 | | 0.26 | No | | | 1266 | | | | | | | | 1272 | 10040450 4 4 | 404.5 | | 0.50 |
NI- | | | 1310 | ISO12156-1-A | 194.5 | C(0.01) | 0.52 | No | | | 1399 | ISO12156-1 | 260 | G(0.01) | 2.81 |
NI | | | 1539 | ISO12156-1-A | 187 | | 0.26 | No | | | 1715 | ISO12156-1-A | 153 | | -0.93 | No | | | 1720 | 10040450 4 4 | 475 | |
-0.16 |
\/ | | | 1854
6028 | ISO12156-1-A | 175 | | | Yes | | | 6044 | | | | | | | | 6047 | | | | | | | | 6075 | ISO12156-1-A |
178.5 | | -0.04 | No | | | 6317 | 130 12 130-1-A | 170.5 | | -0.04 | NO | | | 6373 | | | | | | | | 6378 | | | | | | | | 6379 | | | | | | | | 6446 | ISO12156-1-A | 170 | | -0.34 | | | | 6447 | 10012130-1-7 | | | -0.04 | | | | 6499 | | | | | | | | 6530 | | | | | | | | 0000 | | | | | | | | | normality | OK | | | | | | | n | 10 | | | | | | | outliers | 1 | | | | | | | mean (n) | 179.600 | | | | | | | st.dev. (n) | 13.7594 | | | | | | | R(calc.) | 38.526 | | | | | | | st.dev.(ISO12156-1-A:18) | 28.5714 | | | | | | | R(ISO12156-1-A:18) | 80 | (digital car | mera) | | | | Compa | re | | (2.3 001 | , | | | | - | R(ISO12156-1-B:18) | 90 | (visual) | | | | | | R(D7069:22) | 80 | ` , | | | | | | , | | | | | | # Determination of Manganese as Mn on sample #23050; result in mg/L | lab | method | value | mark z(ta | arg) | remarks | |--------------|---------|-------|-----------|------|--| | 171 | D3831 | <2.5 | | | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | EN16576 | <0,50 | | | | | 541 | | | | | | | 824 | | | | | | | 1039 | | | | | | | 1121 | | | | | | | 1126 | | | | | | | 1237 | | | | | | | 1266 | | | | | | | 1272 | EN16576 | 0.9 | | | | | 1310 | EN16576 | <0.5 | | | | | 1399 | | | | | | | 1539 | | | | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | | | | | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | | | | | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379
6446 | | | | | | | | | | | | | | 6447
6499 | | | , | | | | 6530 | | | | | | | 0530 | | | | | | | | n | 2 | | | | | | Mean(n) | <0.5 | | | application range EN16576:14: 0.5 – 7 mg/L | | | (/ | | | | 3 | # Determination of Nitrogen on sample #23050; result in mg/kg | lab | method | value | mark z(targ) | remarks | | | |------|-------------------|---------|--------------|---------|----------|--| | 171 | D4629 | 14 | 1.60 | | | | | 223 | | | | | | | | 300 | | | | | | | | 492 | | | | | | | | 496 | | | | | | | | | | | | | | | | 541 | D.4000 | 40.57 | | | | | | 824 | D4629 | 13.57 | 1.19 | | | | | 1039 | D4629 | 12.0 | -0.30 | | | | | 1121 | | | | | | | | 1126 | | | | | | | | 1237 | | | | | | | | 1266 | | | | | | | | 1272 | | | | | | | | 1310 | | | | | | | | 1399 | D4629 | 9 | -3.15 | | | | | 1539 | D 1020 | | | | | | | 1715 | | | | | | | | 1713 | | | | | | | | 1720 | D4629 | 12.0 |
0.65 | | | | | | D4629 | 13.0 | 0.65 | | | | | 6028 | | | | | | | | 6044 | | | | | | | | 6047 | | | | | | | | 6075 | | | | | | | | 6317 | | | | | | | | 6373 | | | | | | | | 6378 | | | | | | | | 6379 | | | | | | | | 6446 | | | | | | | | 6447 | | | | | | | | 6499 | | | | | | | | 6530 | | | | | | | | 0550 | | | | | | | | | | | | | | | | | normality | unknown | | | | | | | n | 5 | | | | | | | outliers | 0 | | | | | | | mean (n) | 12.31 | | | | | | | st.dev. (n) | 1.998 | | | | | | | R(calc.) | 5.60 | | | | | | | st.dev.(D4629:17) | 1.053 | | | | | | | R(D4629:17) | 2.95 | | | | | | | , | | | | | | | 16 T | | | | | | | | | | | | | | | | 15 - | | | | | | | | 14 - | | | | 4 | Δ. | | | 13 - | | | | Δ | | | | 12 - | | Δ | | | | | | 11 - | | | | | | | | 10 + | | | | | | | | 9 - | Δ | | | | | | | 8 + | | | | | | | | 7 + | | | | | | | | 6 | | | | | | | | 0 | 1399 | 1039 | | 2854 | <u> </u> | | | | ¥ | 5 | | ÷ | | | ### Determination of Polycyclic Aromatic Hydrocarbons ¹⁾ on sample #23050; result in %M/M | lab | method | value | mark | z(targ) | remarks | |------|---------------------------|----------|------|---------|-------------------| | 171 | | | | | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | EN12916 | 1.34 | | 0.46 | | | 541 | | | | | | | 824 | EN12916 | 1.09 | | -0.55 | | | 1039 | D6379 | 1.26 | | 0.14 | | | 1121 | | | | | | | 1126 | | 1.4 | | 0.71 | | | 1237 | EN12916 | 1.19 | | -0.14 | | | 1266 | | | | | | | 1272 | EN12916 | 1.1 | | -0.51 | | | 1310 | EN12916 | 1.127 | | -0.40 | | | 1399 | IP391 | 1.614 | ex | 1.57 | see paragraph 4.1 | | 1539 | | | | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | | | | | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | | | | | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | 4.00075 | | 0.04 | | | 6379 | | 1.28375 | | 0.24 | | | 6446 | | 1.24 | | 0.06 | | | 6447 | | | | | | | 6499 | | | | | | | 6530 | | | | | | | | normality | OK | | | | | | n | 9 | | | | | | outliers | 0 (+1ex) | | | | | | mean (n) | 1.226 ´ | | | | | | st.dev. (n) | 0.1081 | | | | | | R(calc.) | 0.303 | | | | | | st.dev.(EN12916:19+A1:22) | 0.2471 | | | | | | R(EN12916:19+A1:22) | 0.692 | | | | | | • | | | | | ¹⁾Definition from EN12916: %Polycyclic Aromatic Hydrocarbons = sum of %di and %tri+ Aromatic Hydrocarbons ### Determination of Mono Aromatic Hydrocarbons on sample #23050; result in %M/M | lab | method | value | mark | z(targ) | remarks | |--------------|---------------------------|---------|---------|---------|---------| | 171 | | | | | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | EN12916 | 15.04 | | -0.21 | | | 541 | | | | | | | 824 | EN12916 | 15.33 | | 0.23 | | | 1039 | D6379 | 15.52 | | 0.52 | | | 1121 | | | | | | | 1126 | | 15.3 | | 0.19 | | | 1237 | | | | | | | 1266 | | | | | | | 1272 | | | | | | | 1310 | EN12916 | 15.065 | | -0.17 | | | 1399 | IP391 | 16.496 | G(0.05) | 2.00 | | | 1539 | | | | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | | | | | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | | | | | | | 6075 | | | | | | | 6317
6373 | | | | | | | 6378 | | | | | | | 6379 | | 15.2184 | | 0.06 | | | 6446 | | 14.77 | | -0.62 | | | 6447 | | 14.77 | | -0.02 | | | 6499 | | | | | | | 6530 | | | | | | | | normality | unknown | | | | | | n | 7 | | | | | | outliers | 1 | | | | | | mean (n) | 15.178 | | | | | | st.dev. (n) | 0.2432 | | | | | | R(calc.) | 0.681 | | | | | | st.dev.(EN12916:19+A1:22) | 0.6577 | | | | | | R(EN12916:19+A1:22) | 1.842 | | | | | | , | | | | | ### Determination of Di Aromatic Hydrocarbons on sample #23050; result in %M/M | lab | method | value | mark | z(targ) | remarks | |-------|---------------------------------------|-----------------|-----------------|---------|---------| | 171 | | | | | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | EN12916 | 1.24 | | 0.83 | | | 541 | | | | | | | 824 | EN12916 | 1.03 | | -0.96 | | | 1039 | D6379 | 1.20 | | 0.49 | | | 1121 | | | | | | | 1126 | | 1.2 | | 0.49 | | | 1237 | | | | | | | 1266 | | | | | | | 1272 | | | | | | | 1310 | EN12916 | 1.027 | | -0.99 | | | 1399 | IP391 | 1.614 | G(0.05) | 4.02 | | | 1539 | 661 | | O (0.00) | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | | | | | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | | | | | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | 1.1531 | | 0.09 | | | 6446 | | 1.1551 | | 0.06 | | | 6447 | | 1.13 | | | | | 6499 | | | | | | | 6530 | | | | | | | 0330 | | | | | | | | normality | unknown | | | | | | n | 7 | | | | | | outliers | 1 | | | | | | mean (n) | 1.143 | | | | | | st.dev. (n) | 0.0839 | | | | | | | | | | | | | R(calc.)
st.dev.(EN12916:19+A1:22) | 0.235
0.1171 | | | | | | D/EN12016-10 - A1-22) | 0.1171 | | | | | | R(EN12916:19+A1:22) | 0.328 | | | | | | | | | | | | 1.7 T | | | | | | | 1.6 | | | | | ж | | 1.5 | | | | | | | 1.4 | | | | | | | 1.3 - | | | | | | | 1.2 | | | | | Δ Δ | # Determination of Tri⁺ Aromatic Hydrocarbons on sample #23050; result in %M/M | lab | method | value | mark | z(targ) | remarks | |-------|---------------------------|--|------|---------|-----------------------| | 171 | | | | | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | EN12916 | 0.1 | | -0.02 | | | 541 | | | | | | | 824 | EN12916 | 0.06 | | -0.24 | | | 1039 | D6379 | 0.06 | | -0.24 | | | 1121 | | | | | | | 1126 | | 0.2 | | 0.52 | | | 1237 | | | | | | | 1266 | | | | | | | 1272 | | | | | | | 1310 | EN12916 | 0.0904 | С | -0.08 | first reported: 0.954 | | 1399 | IP391 | <loq< td=""><td></td><td></td><td></td></loq<> | | | | | 1539 | | | | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | | | | | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | | | | | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | 0.1306 | | 0.14 | | | 6446 | | 0.09 | | -0.08 | | | 6447 | | | | | | | 6499 | | | | | | | 6530 | | | | | | | | normality | unknown | | | | | | n | 7 | | | | | | outliers | 0 | | | | | | mean (n) | 0.104 | | | | | | st.dev. (n) | 0.0486 | | | | | | R(calc.) | 0.136 | | | | | | st.dev.(EN12916:19+A1:22) | 0.1847 | | | | | | R(EN12916:19+A1:22) | 0.517 | | | | | | , | | | | | | 0.7 T | | | | | | | 0.6 | | | | | | | 1 1 | | | | | | ### Determination of Total Aromatic Hydrocarbons on sample #23050; result in %M/M | lab | method | value | mark | z(targ) | remarks |
--------|---------------------------|----------|------|---------|-------------------| | 171 | | | | | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | EN12916 | 16.38 | | -0.07 | | | 541 | | | | | | | 824 | EN12916 | 16.42 | | -0.01 | | | 1039 | D6379 | 16.78 | | 0.57 | | | 1121 | | | | | | | 1126 | | 16.7 | | 0.44 | | | 1237 | | | | | | | 1266 | | | | | | | 1272 | | | | | | | 1310 | EN12916 | 16.192 | | -0.38 | | | 1399 | IP391 | 18.110 | ex | 2.72 | see paragraph 4.1 | | 1539 | | | | | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | | | | | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | | | | | | | 6075 | | | | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | 16.50215 | | 0.12 | | | 6446 | | 16.01 | | -0.67 | | | 6447 | | | | | | | 6499 | | | | | | | 6530 | | | | | | | | normality | unknown | | | | | | n | 7 | | | | | | outliers | 0 (+1ex) | | | | | | mean (n) | 16.426 | | | | | | st.dev. (n) | 0.2696 | | | | | | R(calc.) | 0.2696 | | | | | | st.dev.(EN12916:19+A1:22) | 0.733 | | | | | | R(EN12916:19+A1:22) | 1.731 | | | | | | 1412910.19171.22) | 1.751 | | | | | 18.5 T | | | | | | | 18.5 | | | | | | | 10 T | | | | | | ### Determination of Pour Point Manual on sample #23050; result in °C | lab | method | value | mark z(ta | rg) | remarks | |--------------|---------------------|---------|-----------|-----|---------| | 171 | D97 | -30 | -0 | .04 | | | 223 | | | - | | | | 300 | | | - | | | | 492 | | | - | | | | 496 | | | - | | | | 541 | | | | | | | 824 | ISO3016-manual | -27 | | .89 | | | 1039 | ISO3016-automated | -30 | | .04 | | | 1121 | IP15 | -29.0 | | .27 | | | 1126 | | | | | | | 1237 | ISO3016-manual | -30 | -0 | .04 | | | 1266 | | | - | | | | 1272 | | | - | | | | 1310 | | | | | | | 1399 | 1000010 | | | | | | 1539 | ISO3016-manual | -33 | | .97 | | | 1715 | | | | | | | 1720 | 1000040 | | | | | | 1854 | ISO3016-manual | -30 | | .04 | | | 6028 | | | | | | | 6044
6047 | | | - | | | | 6075 | | | - | | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | _ | | | | 6379 | | | | | | | 6446 | ISO3016-automated | -30 | | .04 | | | 6447 | | | | | | | 6499 | | | | | | | 6530 | | | - | | | | | normality | unknown | | | | | | n | 8 | | | | | | outliers | 0 | | | | | | mean (n) | -29.88 | | | | | | st.dev. (n) | 1.642 | | | | | | R(calc.) | 4.60 | | | | | | st.dev.(ISO3016:19) | 3.214 | | | | | | R(ISO3016:19) | 9 | | | | | | | | | | | ### Determination of Pour Point Automated 3 °C interval on sample #23050; result in °C | lab | method | value | mark | z(targ) | remarks | |--------------|----------------------|---------|------|---------|---------| | 171 | D5950 | -30 | | 0.17 | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | D5950 | -33 | | -1.20 | | | 541 | D5950 | -30 | | 0.17 | | | 824 | D6892 | -30 | | 0.17 | | | 1039 | | | | | | | 1121 | | | | | | | 1126
1237 | | | | | | | 1237 | DEOEO | -31.0 | | -0.29 | | | 1272 | D5950 | -31.0 | | -0.29 | | | 1310 | | | | | | | 1399 | D5950 | -30 | | 0.17 | | | 1539 | D0000 | -50 | | 0.17 | | | 1715 | | | | | | | 1720 | | | | | | | 1854 | | | | | | | 6028 | | | | | | | 6044 | | | | | | | 6047 | | | | | | | 6075 | NF T60-105 | -30 | | 0.17 | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | | | | | | 6446 | | | | | | | 6447 | D0740 | | | 0.00 | | | 6499 | D6749 | -29 | | 0.63 | | | 6530 | | | | | | | | normality | unknown | | | | | | n | 8 | | | | | | outliers | 0 | | | | | | mean (n) | -30.38 | | | | | | st.dev. (n) | 1.188 | | | | | | R(calc.) | 3.33 | | | | | | st.dev.(D5950:14R20) | 2.179 | | | | | | R(D5950:14R20) | 6.1 | | | | | | - | | | | | # Determination of Sulfur on sample #23050; result in mg/kg | lab | method | value | mark z(targ) | remarks | |------|----------------------|--------|--------------|---------| | 171 | D5453 | 6.2 | -0.95 | | | 223 | D4294 | 7.57 | 1.09 | | | 300 | | | | | | 492 | | | | | | 496 | ISO20884 | 6.46 | -0.56 | | | 541 | | | | | | 824 | ISO20846 | 6.71 | -0.19 | | | 1039 | ISO20884 | 6.6 | -0.35 | | | 1121 | IP490 | 6.45 | -0.57 | | | 1126 | ISO20846 | 7.1 | 0.39 | | | 1237 | ISO20846 | 7.08 | 0.36 | | | 1266 | | 6.6 | -0.35 | | | 1272 | ISO20846 | 5.9 | -1.39 | | | 1310 | ISO20846 | 6.675 | -0.24 | | | 1399 | D5453 | 7 | 0.24 | | | 1539 | ISO20846 | 7.0 | 0.24 | | | 1715 | | | | | | 1720 | | | | | | 1854 | ISO20846 | 7.1 | 0.39 | | | 6028 | | | | | | 6044 | ISO13032 | 6.7 | -0.20 | | | 6047 | ISO20846 | 7.6 | 1.13 | | | 6075 | ISO20846 | 7.1 | 0.39 | | | 6317 | | | | | | 6373 | | | | | | 6378 | | | | | | 6379 | ISO20846 | 7.03 | 0.29 | | | 6446 | ISO20884 | 6.2 | -0.95 | | | 6447 | D2622 | 8 | 1.73 | | | 6499 | D7220 | 6.5 | -0.50 | | | 6530 | | | | | | | normality | OK | | | | | n | 21 | | | | | outliers | 0 | | | | | mean (n) | 6.837 | | | | | st.dev. (n) | 0.5048 | | | | | R(calc.) | 1.414 | | | | | st.dev.(ISO20846:19) | 0.6735 | | | | | R(ISO20846:19) | 1.886 | | | | | , | | | | ### Determination of Water on sample #23050; result in mg/kg | lab | method | value | mark | z(targ) | remarks | |--------------|----------------------|----------|------|---------------|---------| | 171 | D6304-A:20 | 42 | | 1.35 | | | 223 | | | | | | | 300 | | | | | | | 492 | | | | | | | 496 | ISO12937 | 19 | | -0.51 | | | 541 | | | | | | | 824 | ISO12937 | 26 | | 0.05 | | | 1039 | ISO12937 | 20 | | -0.43 | | | 1121 | IP438 | 39 | | 1.11 | | | 1126 | 10010007 | 45.0 | | | | | 1237 | ISO12937 | 15.3 | | -0.81 | | | 1266 | ISO12937 | 42.75 | | 1.41 | | | 1272 | 18.042027 | 10.6006 | | 0.46 | | | 1310 | ISO12937 | 19.6996 | | -0.46 | | | 1399
1539 | IP438
ISO6296 | 12
30 | | -1.08
0.38 | | | 1715 | ISO12937 | 36 | | 0.36 | | | 1713 | 130 12937 | | | | | | 1854 | D6304-C:16e1 | 19.0 | | -0.51 | | | 6028 | B000+ 0.1001 | | | | | | 6044 | D6304-A:16e1 | 24.1 | | -0.10 | | | 6047 | ISO12937 | 20.9 | | -0.36 | | | 6075 | ISO12937 | 21.7 | | -0.29 | | | 6317 | | | | | | | 6373 | | | | | | | 6378 | | | | | | | 6379 | | | | | | | 6446 | ISO12937 | 17 | | -0.67 | | | 6447 | | | | | | | 6499 | D6304-A:20 | 26.05 | | 0.06 | | | 6530 | | | | | | | | normality | OK | | | | | | n | 17 | | | | | | outliers | 0 | | | | | | mean (n) | 25.32 | | | | | | st.dev. (n) | 9.444 | | | | | | R(calc.) | 26.44 | | | | | | st.dev.(ISO12937:00) | 12.360 | | | | | | R(ISO12937:00) | 34.61 | | | | | | , | | | | | ### Determination of Total Contamination on sample #23051; result in mg/kg | lab | method | Total C. | mark | z(targ) | complete | vol. filtered (mL) | stopped (min) | remarks | |------|---------------------|----------|-----------|---------|----------|--------------------|---------------|----------------------| | 300 | | | | | | | | | | 496 | EN12662:2014 | 35.3 | | 0.30 | Yes | | | | | 824 | EN12662:2014 | 32.79 | | -0.42 | Yes | | | | | 1039 | EN12662:2014 | 0.03 | G(0.01) | -9.84 | No | 525.1 | 2 | | | 1237 | EN12662:2014 | 33.8 | | -0.13 | Yes | | | | | 1266 | EN12662:2014 | 33.53 | | -0.21 | Yes | | | | | 1310 | EN12662:2014 | 35.96 | | 0.49 | Yes | 300 | 8 | | | 1399 | | | | | | | | | | 1854 | EN12662:2014 | 35.3 | | 0.30 | Yes | 300 | 12.3 | | | 6028 | | | | | | | | | | 6047 | EN12662:2014 | 22.0 | C,G(0.01) | -3.52 | No | 141 | 30 | first reported: 16.3 | | 6075 | EN12662:2014 | 32.5774 | | -0.48 | Yes | | 15 | | | 6373 | | | | | | | | | | 6446 | EN12662:2014 | 34.7 | | 0.13 | Yes | 300 | | | | 6530 | | | | | | | | | | | | 014 | | | | | | | | | normality | OK | | | | | | | | | n | 8 | | | | | | | | | outliers | 2 | | | | | | | | | mean (n) | 34.245 | | | | | | | | | st.dev. (n) | 1.2525 | | | | | | | | | R(calc.) | 3.507 | | | | | | | | | st.dev.(EN12662:14) | 3.4789 | | | | | | | | | R(EN12662:14) | 9.74 | | | | | | | #### **APPENDIX 2** ### Number of participants per country - 1 lab in ARGENTINA - 1 lab in BELGIUM - 1 lab in BULGARIA - 1 lab in ESTONIA - 1 lab in FINLAND - 3 labs in GERMANY - 3 labs in GREECE - 1 lab in HUNGARY - 1 lab in KINGDOM OF BAHRAIN - 1 lab in KOREA, Republic of - 1 lab in MALI - 1 lab in MARTINIQUE - 4 labs in NETHERLANDS - 1 lab in POLAND - 1 lab in SERBIA - 1 lab in SLOVENIA - 1 lab in SOUTH AFRICA - 1 lab in SPAIN - 1 lab in SUDAN - 1 lab in TANZANIA - 1 lab in TUNISIA - 1 lab in UGANDA - 1 lab in UNITED KINGDOM - 1 lab in UNITED STATES OF AMERICA #### **APPENDIX 3** #### **Abbreviations** C = final test result after checking of first reported suspect test result D(0.01) = outlier in Dixon's outlier test D(0.05) = straggler in Dixon's outlier test G(0.01) = outlier in Grubbs' outlier test G(0.05) = straggler in Grubbs' outlier test DG(0.01) = outlier in Double Grubbs' outlier test DG(0.05) = straggler in Double Grubbs' outlier test R(0.01) / R1 = outlier in Rosner's outlier test R(0.05) / R5 = straggler in Rosner's outlier test E = calculation difference between reported test result and result calculated by iis W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation n.a. = not applicable n.e. = not evaluated n.d. = not detected fr. = first reported f+? = possibly a false positive test result? f-? = possibly a false negative test result? SDS = Safety Data Sheet ### Literature - iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018 - 2 ISO5725:86 - 3 ISO5725 parts 1-6:94 - 4 ISO13528:05 - 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993) - 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975) - 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988) - 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993) - 9 Analytical Methods Committee, Technical Brief, No 4, January 2001 - 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002) - 11 W. Horwitz and R. Albert, J. AOAC Int, 79, 3, 589-621, (1996) - Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), 165-172, (1983) - 13 iis memo 1904 Precision data of Calculated Cetane Index Four Variables in
Gasoil